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Compound liquid jets at low Reynolds numbers
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Abstract

Asymptotic methods based on the slenderness ratio are used to obtain the leading-order equations which govern the fluid dynamics of
axisymmetric, isothermal, Newtonian, compound liquid jets such as those employed in the manufacture of textile fibres, composite fibres and
optical fibres, at low Reynolds numbers. It is shown that the leading-order equations are one-dimensional, and analytical solutions are
obtained for steady flows at zero Reynolds numbers, zero gravitational pull, and inertialess jets. A linear stability analysis of the viscous flow
regime indicates that the stability of compound jets is governed by the same eigenvalue equation as that for the spinning of round fibres and
annular jets. Numerical studies of the time-dependent equations subject to axial velocity perturbations at either the nozzle exit or the take-up
point, or both, indicate that the compound jet dynamics evolves from periodic to chaotic motions as the extension or draw ratio is increased.
The power spectrum of the inner (round) jet’s radius at the take-up point broadens and the phase diagrams exhibit holes at large draw ratios.
The number of holes increases as the draw ratio is increased, thus indicating chaotic behaviour. It is also shown that the nonlinear dynamics
of bicomponent, compound jets is analogous to that of single-component, annular jets. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most of the man-made fibres used in textile industries are
manufactured by means of fibre spinning processes which
consist of the steady extrusion of hot melts through a series
of small holes in a plate (spinnerets) into ambient air; the
resulting extrudates are simultaneously extended and wound
up on a rapidly rotating drum (godet). Freezing takes place
between the spinneret and the godet, and, usually, large
extensions rates, rapid cooling, and high speeds are involved
[1]. Fibre spinning processes are also used in the manufac-
ture of reinforced fibres and optical fibres.

Although there has been quite a lot of research on the
development of one-dimensional, mathematical models for
the analysis of single-component filaments and jets under
both isothermal and nonisothermal conditions at low
Reynolds numbers [2,3], compound fibres such as those
used in reinforced materials and optical fibres (which are
manufactured in coextrusion processes) have received very
little attention despite the fact that the combination of two or
more different materials with different properties may result
in composite fibres with highly desirable properties [4-9].

* Tel.: +34-95-2131402; fax: +34-95-2132816.
E-mail address: jirs@lcc.uma.es (J.I. Ramos).

For example, in the manufacture of optical fibres, the core is
surrounded by a sheath of cladding material.

Park [4] used perturbations methods based on the slender-
ness ratio and the smallness of the Deborah number in his
studies of steady, isothermal, two-phase or compound fibres
consisting of a Newtonian core layer surrounded by a sheath
of non-Newtonian layer with a Maxwell rheology. His
studies result in a system of ordinary differential equations
for the axial velocity component and radii of the two-phase
fibre, which is more manageable than the two-dimensional
conservation equations of mass and linear momentum from
which it was derived. Lee and Park [5] employed the one-
dimensional equations developed by Schultz [10] to study
the linear stability of the spinning of isothermal, bicompo-
nent fibres characterized by a Newtonian fluid for the core
and an upper-convected Maxwell fluid for the cladding, and
showed that the stability of the fibre can be maintained at
higher draw ratios than obtainable when the same fluid is
employed for both the core and the cladding. Naboulsi and
Bechtel [8] introduced a one-dimensional model of isother-
mal, Newtonian, bicomponent fibre filaments by integrating
the three-dimensional equations over the filament cross-
section, and examined the influence of density, viscosity
and surface tension ratios on the steady state fluid dynamics
of compound jets at low Reynolds numbers. Ji and Yang [6]
and Ji et al. [7] studied isothermal, bicomponent fibres
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characterized by a Newtonian fluid for the core and a Phan-
Thien/Tanner fluid for the cladding.

Previous studies of isothermal, bicomponent or
compound fibres at low Reynolds numbers [4-9] have
considered isothermal, steady state flows or determined
the linear stability of these flows; however, none of these
studies has considered the possible steady state solutions of
isothermal, steady, bicomponent fibres, and determined the
effects of the upstream and downstream boundary condi-
tions, i.e. the conditions at both the nozzle exit and the
take-up point, forcing and fluid dynamics parameters on
the nonlinear dynamics of compound liquid fibres.

The objective of this paper is several fold. First, the lead-
ing-order fluid dynamics equations of compound, isother-
mal, Newtonian jets at low Reynolds numbers are derived
by means of perturbation methods based on the slenderness
ratio [3,9,12]. Since the derivation of the leading-order
equations is analogous to that reported in Ref. [12] for
single-component annular jets, only a brief description of
the steps employed in such a derivation are provided.
Second, analytical solutions to the steady state solutions
are obtained for several flow regimes. For the viscous
flow regime, i.e. zero Reynolds number, a linear stability
analysis can be performed analytically and shown to be
governed by the same eigenvalue equation as that for
isothermal, round jets at low Reynolds numbers [11] and
single-component, annular liquid jets [12]. Third, numerical
studies of the time-dependent equations are performed in
order to determine the nonlinear dynamics of compound
jets as a function of the nondimensional parameters that
govern the flow, and the location, amplitude and frequency
of the applied velocity perturbations. These studies are
performed for axial velocity components at either the
upstream boundary, i.e. at the nozzle exit, or the down-
stream boundary, i.e. at the take-up point, higher and
lower than those determined from the linear stability analy-
sis, and indicate that the nonlinear dynamics of bicompo-
nent compound jets is similar to that of single-component,
annular jets for take-up velocities greater than the critical
one obtained from the linear stability analysis.

2. Formulation

Consider an axisymmetric, compound liquid jet such as
the one shown schematically in Fig. 1, consisting of two
immiscible, incompressible (constant density) fluids which
are isothermal and Newtonian. The inner (round, subscript
1) and outer (annular, subscript 2) jets correspond to 0 =
r = R(t,x) and R(t,x) = r = R,(t,x), respectively, where ¢
is time, x is the axial coordinate, and R and R, denote the
inner jet’s radius and the outer jet’s outer radius, respec-
tively. The fluid dynamics of the compound jet are governed
by the two-dimensional conservation equations of mass and
linear momentum in the radial (r) and axial directions,
appropriate boundary conditions at the nozzle exit (x = 0),
downstream or take-up location (x = L), initial conditions,
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Fig. 1. Schematic of a compound liquid jet.

symmetry boundary conditions at » = 0, and kinematic and
dynamic boundary conditions at R(¢,x) and R,(¢,x). These
equations and kinematic and dynamic boundary conditions
(except for those at the symmetry axis) are analogous to
Egs. (1)-(3) and Egs. (4), (5), (7) and (8) of Ref. [12] for
r = R,(t,x), whereas those at r = R(¢, x) are concerned with
the continuity of the tangential stresses and the jump of
normal stresses due to surface tension. Since the equations
and interfacial boundary conditions for compound jets are
analogous to those of Ref. [12] except for those at » = 0 and
r = R(t,x), they are not presented here. However, it is
emphasized that, in this paper, there is a Newtonian jet in
0 = r = R(t,x), whereas a passive gas occupied this region
when dealing with annular liquid jets [12]. In addition, the
problem considered in this paper includes two different
materials characterized by their densities p; and dynamic
viscosities w; i = 1,2, and two surface tensions, o, i =
1,2 at r = R and r = R,, respectively.

For slender compound jets at low Reynolds number, i.e.
€ = Ry/A < 1, it is convenient to nondimensionalize r, x, t,
u, v and p with respect to Ry, A, Alug, uy, vy and pug/A,
respectively, where Ry and A denote a characteristic radius
and a characteristic wave length in the axial direction,
respectively, u is a characteristic (constant) axial velocity
component, vy = Ryuy/A, v is the radial velocity component,
p is the pressure, and u is a reference viscosity. Here, we
will take the reference viscosity as w,. Using this nondi-
mensionalization, one can easily deduce that the resulting
nondimensional equations and boundary conditions depend
on €, and the Reynolds, Froude and capillary numbers, i.e.

upR uj u
=ono’ Fr— 10 Ca2=’u2 0 )

173 gRy’ g

R€2

respectively, where g is the gravitational acceleration.
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For small Reynolds numbers, Re, = €Re with Re = O(1),
Fr = F/e and Ca, = Cale and where F = O(1) and Ca =
O(1), which correspond to large gravitational fields and
large surface tension, the dependent variables R, R,, u;, v;
and p; where i = 1,2, can be expanded as in Ref. [12] to
yield after lengthy algebra the following leading-order
equations

9B OB
Re(A2 + ﬂAl)(— + B—)
P2

ot 0x
R d JB
F P2 ox 12%) ox
sea (G2 + 220, @
2Ca \ ox o, ox
0A Jd(A,B
2 9A4:8) _ 0, (3)
Jat ax
0A d(AB
2 9(A,B) =0, 4)
Jat ax
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R R — R
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1 > 2 2 @)

B, Ry and R, are the leading-order axial velocity compo-
nent, inner jet’s radius and outer jet’s outer radius, and the
subscripts 1 and 2 denote the inner and outer jets, respec-
tively.

The leading-order nondimensional axial stresses on the
inner and outer jets (nondimensionalized with respect to

€T uoupR,) are

0B L /1 o 1
F,i'):Al(ﬂ——pﬁ ( +f‘f)), (©)
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respectively.

Egs. (2)—(4) are analogous to but simpler than Eqgs. (31)
and (36) of Ref. [12] for annular liquid jets consisting of
only a Newtonian liquid; however, the dynamics of
compound jets depends on many more physical parameters
such as p/p,y, 1/Ly, and o(/o,.

3. Analytical solutions for steady jets

For steady flows, Eqgs. (3) and (4) have the following
solutions

AB =0, AyB = 0, (8)

where Q;, i = 1,2, are constants, Q; + O, = Q.

Viscous regime. For the viscous flow regime character-
ized by Re =0 and finite values of F, and no surface
tension, the leading-order axial velocity component (cf.

Eq. (2)) is governed by Eq. (44) of Ref. [12], i.e.

B (x) = exp(ax), Ay (x) = Q; exp(—ax), o)

Ay (%) = O, exp(—ax),

where a = In B(1), and the linear stability analysis of this
regime can be performed analytically and results in the same
eigenvalue problem as that for round jets [11] and annular
liquid jets [12], i.e. the eigenvalue whose real part is zero
corresponds to o, = 3.00650 and B(1) = 20.21; the imagin-
ary part of this eigenvalue is o; = 14.011. Moreover, the
linear stability analysis indicates that the eigenvalues only
depend on «, i.e. the axial velocity at the take-up point, and
the results obtained by Schultz and Davis [11] for round jets
at low Reynolds numbers apply to compound jets. This is
not surprising, for, in the viscous regime, gravitational and
inertia effects (which depend on the density ratio) are
absent, and Egs. (3) and (4) can be added to obtain an
equation for Rj.

Viscous-capillary regime. This regime is characterized by
Eq. (8), and Re = 0 and Re/F = 0, i.e. Eq. (2) becomes

1(3(142 + ﬂAl)d_B) + L(dRZO + ﬂ%) =0,
dx 125} dx 2Ca dx () dx
(10)
and has the following solution
a 0\?
= — x|+ =
B, (5exp< pr) a) : (11)

where « and § are integration constants,

1 o

P=3(0:+20). 0= gma (o + ol L)
Note that 6 and « depend on the axial velocity component at
the take-up point, i.e. they depend on B(1). The values of R,
and R, can be easily determined from Egs. (3) and (4), but
they are not shown here.

Viscous-gravitationless regime. This regime corresponds
to Eq. (8), F = o and Re # 0, i.e. Eq. (2) becomes

P dB d(( ™ )dB)
RelA, + =A, )B— = — (3[4, + 224, )— ), Q2
e<2pzl)dxdx 2w (12

which has the following solution

af3 exp(ax)
Bx)= ———~"" | 13
@ = T Bexplan) (13
where @ and B = P/(a + P) are integration constants which
can be easily determined from the conditions B(0) = 1 and

B(1), and

p
0, + 0,
P=Re P2 (14)

3(Q2 " ﬂQl)'
M2

Viscous-gravitationless-capillary regime. This regime
corresponds to Eq. (8), and Re # 0 and Re/F =0, i.e.
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Eq. (2) becomes

o1 dB d(( W dB))
Re[A, + LA, )B== = = (3[4, + 214, =
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— , (15
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which can be easily integrated upon making the change B =
22 and has different solutions depending on the roots of
P+ az — Q=0 where P and Q have been defined
previously, and « is an integration constant.

Let us define ¢ = a/3P and r = Q/2P. Then, the solution
to Eq. (15) is

3

3 l_[ (Zi‘Z/)il
l_[ (z —z)=7
i=1

if ¢° + r* < 0 and z are the different (real) roots (z) of

= Bexp(gx), (16)

PZ+az—Q=0. A7)
If q3 + 2 =0 and Eq. (17) has three identical (real) roots,
the solution of Eq. (15) is

1 1 P

If q3 + > =0and Eq. (17) has two identical (real) roots zj,
the solution of Eq. (15) is

_ 1/(12*11)2 _
(—Z sl ) exp(i(Z2 Zl)) = Bexp(f(zz - zl)zx).

=2 (z—1z1) 2
(19)
If q3 + 72 >0 and Eq. (17) has a real root (z;) and two
complex conjugate ones (z, * iz;), i? = —1, the solution
of Eq. (15) is
P 1
+ =
P73 @ —z) +z
12
- - G—z)+z
x| 2% arctan =— 2 4 ln< ) (20)
Z; Z; 17

In Egs. (16)—(20), B and « are integration constants which
can be determined from the condition B(0) = 1 and depend
on the value of the take-up velocity, i.e. B(1).

The linear stability of the viscous-gravitationless,
viscous-capillary and  viscous-gravitationless-capillary
regimes whose steady state solutions have been obtained
in the previous paragraphs requires the use of numerical
techniques based upon the discretization of the equations
for the perturbed quantities.

4. Presentation of results

As shown in previous sections, the nonlinear dynamics of
steady, isothermal, Newtonian, compound liquid jets at low

Reynolds numbers depends on Re, Re/F, Ca, p., pi/pa,
i/, 01/, O, Or and B(1).

Some sample results illustrating the steady state
compound jet’s geometry and axial velocity component
are presented in Figs. 2 and 3. These figures were obtained
by solving numerically the steady state equations presented
in previous sections by means of a second-order accurate
finite difference method; the number of grid points was at
least 2001, B(0) = 1 and R(0) = 1. Fig. 2 indicates that the
axial velocity increases rapidly near the downstream or
take-up point. The axial traction on the inner round jet
also increases quite rapidly near the take-up point, except
at low Reynolds numbers for which it increases rather
smoothly from the upstream to the downstream boundaries.
The compound jet’s geometry shown in Fig. 2 clearly shows
the jet’s contraction near the nozzle exit at low Reynolds
numbers; the contraction at higher Reynolds numbers is
large at the take-up point where the axial velocity compo-
nent is largest. Fig. 2 also indicates that the ratio of the axial
traction on the inner jet to that on the outer one (hereon,
referred to as the axial traction ratio) is largest at the
upstream boundary and increases as the Reynolds number
is increased; this ratio decreases downstream and tends
towards a value equal to unity.

The steady state compound jet’s radii were found to
increase slightly as Re/F was decreased due to the gravita-
tional pull; the axial velocity component and axial traction
on the inner jet increase slightly as Re/F was increased for
the values of the parameters shown in Fig. 2 and Re/F = 1,
10 and 0.1. The ratio of traction forces at the nozzle exit or
die was found to be about 1.16, 1.15 and 1.12 for Re/F =
0.1, 1 and 10, respectively, and decreased towards unity at
the downstream boundary.

The compound jet’s geometry, leading-order axial velo-
city and axial traction force on the inner jet were not found
to be very sensitive to the capillary number for Ca = 1, 10
and 0.5; however, the ratio of axial traction forces at the
upstream boundary was found to be equal to about 1.45,
1.15 and 1.02 for Ca = 0.5, 1 and 10, respectively.

The steady state compound jet’s radii and the thickness of
the steep region at the downstream boundary were found to
increase as p/p, was increased as indicated in Fig. 3; both
the axial traction force on the inner jet and its gradient
increase at the downstream boundary as p/p, was
increased. The ratio of axial traction forces at the upstream
boundary was found to be equal to about 1.75, 1.15 and 1.12
for p1/p, =5, 1 and 0.5, respectively.

The steady state compound jet’s radii and the thickness of
the steep region at the downstream boundary were found to
increase as w i/, was decreased; the axial traction force on
the inner jet increases whereas its gradient at the down-
stream boundary decreases as w,/w, is increased. The
ratio of axial traction forces at the upstream boundary was
found to be equal to about 3.75, 1.15 and 0.20 for w,/u, =
0.5, 1 and 10, respectively.

The compound jet’s geometry, leading-order axial
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Fig. 2. (a) Compound jet’s geometry, (b) axial velocity component, (c) axial traction on the inner jet and (d) ratio of axial traction on the outer jet to that on the
inner one. (Re/Fr =1, Ca=1, pi/p, = 1, w/u, =1, oy/op, = 1,p, =0, 01 =1, 0, = 1, R(0) = 1, B(0) = 1, B(1) = 100. Solid lines: Re = 1; dashed

lines: Re = 2; dashed-dotted lines: Re = 0.1).

velocity and axial traction force on the inner jet were not
found to be very sensitive to /0, and p,; however, the ratio
of axial traction forces at the upstream boundary was found to
be equal to about 1.15, 1.07 and 1.01 for o,/0, =1, 0.5
and 0.1, respectively, and equal to about 1.18 and 1.15 for
p. = 1 and 0, respectively.

For R(0) = 1, it has been observed that an increase in Q,
results in an increase in B(0), a decrease in R,(0), and a large
contraction of the compound jet near the take-up point. Both
B(1) and the axial traction force on the inner jet at the take-
up point increase as Q) is increased, while the ratio of axial
traction forces at the nozzle exit is about 21 for Q; = 0.1.
An increase in Q, with B(0) = 1 results in an increase in
R,(x); however, the axial velocity component and the axial
traction force are not very sensitive to (,. The ratio of axial
traction forces at the upstream boundary was found to
be equal to about 2.23 and 0.20 for O, =2 and 0.1,
respectively.

The nonlinear dynamics of compound jets subject to

time-dependent perturbations was studied by solving
numerically Eqgs. (2)—(4) for take-up speeds smaller than,
equal to or larger than the critical one obtained from the
linear stability analysis of the viscous flow regime. It must
be noted that the time-dependent dynamics of compound
jets depends on the nondimensional parameters mentioned
above and the amplitude and forcing of the imposed pertur-
bations. For axial velocity perturbations at either the nozzle
exit or the take-up point, the leading-order axial velocity
employed in the time-dependent studies is

B(t,x;) = Bi(x;)(1 + a; sin S;t), 20

where a; and S; denote the (nondimensional) amplitude and
frequency of the imposed forcing at x;, and (j,x;) = (i,0)
and (e, 1) denote the nozzle exit and the take-up point,
respectively.

The numerical results corresponding to Re = 107*, Re/
F=0,Ca=10" p/py=1, wlur =1, oyJo, =1, p, =
0, 0,=050, 0,=1—-0;, Bgx0) =1, Rad=0.20,
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Fig. 3. (a) Compound jet’s geometry, (b) axial velocity component, (c) axial traction on the inner jet and (d) ratio of axial traction on the outer jet to that on the
inner one. (Re =1, Re/Fr=1,Ca=1, uj/u, =1, oy/loy =1,p, =0, Q1 =1, O, = 1, R(0) = 1, B(0) = 1, B (1) = 100. Solid lines: p;/p, = 1; dashed

lines: p,/p, = 5; dashed-dotted lines: p;/p, = 0.5).

B(1) = 20,/Rad’, a; = 0.05,a, = 0, S; = 1, S, = 1 indi-
cate that the compound jet’s radii and axial traction forces
on the inner and outer jets at the take-up point are periodic
functions of time which have the same frequency as that of
the imposed axial velocity perturbation at the nozzle exit or
die, i.e. at x = 0. The amplitude of the compound jet’s
radius at the interface between the inner and outer jets is
about 0.002 which is much smaller than the mean value of
the inner jet’s outer radius. This periodic behaviour is also
observed in both the power spectrum and phase diagram of
R(z, 1); the power spectrum is characterized by a single peak
at a frequency equal to that of the imposed velocity pertur-
bations, i.e. 1/2m, and the phase diagram is a circumference.

The numerical results corresponding to the above set of
parameters except that B, (1) = 44.5 > B, indicate that the
compound jet’s radii and axial traction force on the inner jet
at the take-up point are spiky, and their maximum values
seem to be modulated with a frequency of the order of that
the imposed velocity perturbations, whereas the ratio of

axial traction forces is constant. Moreover, the power spec-
trum of R(#,1) is characterized by several peaks, and the
frequency associated with these peaks is not related to that
of the applied velocity perturbations. In addition, the phase
diagram for R(¢, 1) has a duck’s beak shape, presents corru-
gations on its periphery, is thick, and contains some holes,
i.e. regions which are never visited. This phase diagram is
analogous to that presented in Fig. 7 of Ref. [12] for annular
jets, and the largest and smallest values of R(z, 1) are larger
and smaller, respectively, and the values of (dR/dr)(¢, 1) are
larger than those corresponding to B (1) = 25.

For the same set of parameters as above except that
B (1) = 100, the numerical results indicate that the lead-
ing-order axial velocity component, jet’s radii and axial
traction forces are spiky functions of time, where the largest
and smallest values of R(#, 1) increase and decrease, respec-
tively, as Bg(1) is increased; the axial traction force also
increases as Bg(1) is increased in accord with the large
gradient of the axial velocity at the take-up point. Moreover,
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the amplitude of the modulation of the spikes in the
compound jet’s radii and axial traction force on the inner
jet at the take-up point for B (1) = 100 are smaller than for
B (1) = 44.5. This is also observed in the phase diagram
which is much thinner for B (1) = 100 and contains more
holes than that for By (1) = 44.5. This phase diagram is
similar to that of Fig. 8 of Ref. [12].

As discussed previously for single-component annular
liquid jets [12], the broadening of the power spectrum and
the appearance of holes in the phase diagram are indicative
of the presence of chaos. However, the transition from the
periodic motion for B (1) = 25 to the chaotic one corre-
sponding to By (1) = 100 does not seem to follow a standard
scenario such as that of Ruelle-Takens at least for suffi-
ciently large values of B(1); in fact, it has been observed
that the transition to chaos for large values of B(1) is rather
abrupt or explosive, whereas, for smaller values of B(1), it
has been observed that R(z, 1) evolves from a fixed point to a
periodic motion and then to a quasiperiodic motion and
chaos as B(1) is increased.

It is remarkable to notice that the results of the three time-
dependent studies discussed in the previous paragraphs
exhibit phase diagrams and power spectra similar to the
ones observed in hollow, annular liquid jets [12] despite
the differences in the geometry and boundary conditions,
i.e. a single-component, hollow, annular jet is characterized
by two free surfaces, whereas a bi-component or compound
jet is characterized by a free surface, an inner—outer jet
interface and symmetry conditions for the inner jet. This
similarity indicates that the nonlinear dynamics of bi-
component compound jets and single-component, annular
jets are analogous for take-up velocities smaller and greater
than that corresponding to the critical value determined in
the linear stability analysis of the viscous flow regime. For
this reason, no time-dependent results are shown in this
paper, and only the effect of the flow parameters on R(z, 1)

Table 1

2895

are summarized in Table 1. This table shows that, for Re =
1, the compound jet behaves in a periodic manner with a
frequency equal to that of the imposed velocity fluctuations,
and there is very little difference between the largest and
smallest values of R(z, 1). The largest and smallest values of
R(t,1) increase and decrease, respectively, as Re is
decreased on account of the large gradients of the axial
velocity at the downstream boundary which increase as Re
is increased; a similar comment applies to the axial traction
force at the take-up point. For the Reynolds number of the
basic set of parameters of Table 1, the effects of the Froude
number are small; however, the largest value of R(¢,1)
decreases as Re/F is increased on account of the increase
in the gravitational pull as Re/F is increased.

Table 1 also shows that the effects of the capillary number
are small, although a decrease in Ca results in an increase in
the largest value of R(z, 1). The effects of pi/p,, w1/, and
o/o, on the nonlinear dynamics of compound liquid jets
have been found to be small for the values of the parameters
considered in Table 1. As should be expected, the largest
value of R(z, 1) increases as p, is decreased.

5. Conclusions

The leading-order fluid dynamics equations of isother-
mal, axisymmetric, Newtonian, compound liquid jets at
low Reynolds numbers have been derived by means of
perturbation methods based on the slenderness ratio. It has
been shown that these leading-order equations are one-
dimensional and correspond to the conservation of mass
and global linear momentum conservation, and are much
simpler but depend on a larger set of parameters than
those corresponding to single-component, annular jets, i.e.
the Reynolds, Froude and capillary numbers, pressure of the
surroundings, and density, viscosity and surface tension ratios.

Maximum and minimum values of R(z, 1) and axial traction forces on the inner and outer jets at the take-up point, and maximum spectral power and frequency
associated with the maximum power of R(z, 1) : effects of the fluid dynamics parameters (phase diagram with holes, filled phase diagram and periodic
behaviour are identified with superscripts 1, 2 and 3, respectively on the leftmost column; the basic set of parameters is Re = 1074, RelF =0, Ca = 1039,
pilpr =1, u/py, =1, 0/cp =1,p, =0, 0, =0.50, 0, =1 — Qy, B,x(0) = 1, Rad = 0.10, B (1) = 2Q1/Rad2; the upstream axial velocity is sinusoidally
excited with an amplitude and frequency equal to 0.01 and 1, respectively)

Parameter Roac(t, 1) Ruin(t, 1) F FO F@ Fo P f
Re=0.1° 0.2737 0.0307 59.2482 1.5227 59.2482 1.5227 38.6010 2.1449
Re=13 0.1009 0.0990 53.6308 51.6645 53.6308 51.6645 0.0092 0.16
RelF=1" 0.4426 0.0161 56.8320 0.3583 56.8320 0.3583 38.5327 1.8849
RelF =0.01' 0.4537 0.0154 59.1257 0.3354 59.1257 0.3354 31.7847 1.8299
Ca = (10°) 0.4527 0.0155 58.8154 0.3386 58.8154 0.3386 37.7074 1.8299
Ca = (10%" 0.4543 0.0154 59.0518 0.3359 59.0539 0.3360 32.6179 1.8249
pilpa= 10 0.4521 0.0156 58.9173 0.3418 58.9173 0.3418 28.9642 1.8299
pilpr=0.1' 0.4535 0.0155 58.6993 0.3371 58.6993 0.3371 38.7148 1.8299
wilpa = 10" 0.4529 0.0155 590.8526 3.3816 59.0853 0.3382 38.7382 1.8299
il =0.1" 0.4535 0.0154 5.9194 0.0336 59.1943 0.3364 37.7181 1.8299
alos= 10" 0.4527 0.0155 58.8597 0.3386 58.8597 0.3386 38.0239 1.8299
0, =0.75 0.3775 0.0193 70.0343 0.7411 23.3448 0.2470 41.0396 3.0798
0, =025 0.5650 0.0121 38.4789 0.1076 115.4367 0.3227 31.2553 0.7950
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Analytical solutions to the leading-order steady state
equations have been obtained for four different flow
regimes. For the steady viscous regime, a linear stability analy-
sisis shown to be governed by the same eigenvalue equation as
that for the spinning of isothermal, round jets and single-
component, annular jets at zero Reynolds numbers.

Numerical results of the time-dependent leading-order
equations indicate that, as the axial velocity at the down-
stream boundary is increased, the radius of the inner round
jet at the take-up point evolves from a fixed point to a
periodic motion to a broad spectrum. The phase diagrams
of this radius may exhibit holes, i.e. regions which are not
visited, when the axial velocity component at the take-up
boundary is sufficiently large, thus indicating the presence
of chaos. These phase diagrams are similar to the ones found
for single-component annular liquid jets. It has also been
shown that the compound jet’s radii and axial traction force
at the take-up point exhibit very sharp spikes whose separa-
tion depends on the Reynolds, Froude and capillary
numbers, density, viscosity and surface tension ratios, and
location, amplitude and frequency of the imposed velocity
perturbations. These spikes are somewhat modulated with a
lower frequency which is of the order of that of the imposed
axial velocity perturbation.
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